报告题目:The stability of polynomials sequences
报告人:刘丽:曲阜师范大学教授
报告时间:2023 5.18 10:00-11:00
腾讯会议号:763-984-338
报告摘要:In this talk, we introduce our results for the real stability and the Hurwitz stability, which generalize the real-rootedness and the strong q-log-convexity of polynomials sequences respectively. As applications, we obtain the real stability of many important multivariate polynomials, such as multivariate Eulerian polynomials, multivariate Bell polynomials and multivariate polynomials over Stirling permutations in a unified manner. And we also show the zeros distribution of the reverse strong Turan expressions of Bell polynomials, Dowling polynomials, several independence polynomials and sextet polynomials.
报告人简介:刘丽,教授,博士生导师。霍英东青年教师奖获得者,山东省泰山学者青年专家,山东省“组合数学及其应用”创新团队带头人。2009年博士毕业于大连理工大学,师从王毅教授。主要从事多项式零点分布、矩阵全正性和组合不等式的研究。在Advances in Applied Mathematics等数学期刊上发表论文20余篇。先后主持国家自然科学基金项目3项。以第一完成人获山东省自然科学三等奖和山东省高等大发体育科学技术奖一等奖各1项。
上一条:【预告】多级有机低维晶态结构与光子学研究
下一条:【预告】Erdos-Ko-Rado Theorem for Multisets
【返回】